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Consistent Nonparametric Tests of Independence

Arthur Gretton, László Györfi

Abstract. Three simple and explicit procedures for testing the independence of two multi-dimensional random

variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when the empirical

distribution of the variables is restricted to finite partitions. A third test statistic is defined as a kernel-based

independence measure. Two kinds of tests are provided. Distribution-free strong consistent tests are derived on the

basis of large deviation bounds on the test statistcs: these tests make almost surely no Type I or Type II error after

a random sample size. Asymptotically α-level tests are obtained from the limiting distribution of the test statistics.

For the latter tests, the Type I error converges to a fixed non-zero value α, and the Type II error drops to zero, for

increasing sample size. All tests reject the null hypothesis of independence if the test statistics become large. The

performance of the tests is evaluated experimentally on benchmark data.
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1. Introduction

Consider a sample of R
d × R

d′-valued random vectors (X1, Y1), . . . , (Xn, Yn) with indepen-
dent and identically distributed (i.i.d.) pairs defined on the same probability space. The
distribution of (X,Y ) is denoted by ν, while µ1 and µ2 stand for the distributions of X
and Y , respectively. We are interested in testing the null hypothesis that X and Y are
independent,

H0 : ν = µ1 × µ2, (1)

while making minimal assumptions regarding the distribution.
We consider two main approaches to independence testing. The first is to partition

the underlying space, and to evaluate the test statistic on the resulting discrete empirical
measures. Consistency of the test must then be verified as the partition is refined for
increasing sample size. Previous multivariate hypothesis tests in this framework, using
the L1 divergence measure, include homogeneity tests (to determine whether two random
variables have the same distribution), by Biau and Györfi (2005); and goodness-of-fit tests
(for whether a random variable has a particular distribution), by Györfi and van der Meulen
(1990); Beirlant et al. (1994). The log-likelihood has also been employed on discretised
spaces as a statistic for goodness-of-fit testing, by Györfi and Vajda (2002). We provide
generalizations of both the L1 and log-likelihood based tests to the problem of testing
independence, representing to our knowledge the first application of these techniques to
independence testing.

We obtain two kinds of tests for each statistic: first, we derive strong consistent tests
— meaning that both on H0 and on its complement the tests make a.s. no error after a
random sample size1 — based on large deviation bounds. While such tests are not common
in the classical statistics literature, they are well suited to data analysis from streams,
where we receive a sequence of observations rather than a sample of fixed size, and must
return the best possible decision at each time using only current and past observations.
Our strong consistent tests are distribution-free, meaning they require no conditions on
the distribution being tested; and universal, meaning the test threshold holds independent
of the distribution. Second, we obtain tests based on the asymptotic distribution of the
L1 and log-likelihood statistics, which assume only that ν is nonatomic. Subject to this
assumption, the tests are consistent: for a given asymptotic error rate on H0, the probability
of error on H1 drops to zero as the sample size increases. Moreover, the thresholds for the
asymptotic tests are distribution-independent. We also present conjectures regarding the
form taken by strong consistent and asymptotic tests based on the Pearson χ2 statistic,
using the goodness-of-fit results of Györfi and Vajda (2002) (further related test statistics
include the power divergence family of Read and Cressie (1988), although we do not study

1. In other words, denoting by P0 (resp. P1) the probability under the null hypothesis (resp. under the
alternative), we have

P0{rejecting H0 for only finitely many n} = 1 (2)

and
P1{accepting H0 for only finitely many n} = 1. (3)

This concept relates to the definition of discernability introduced by Dembo and Peres (1994): two
ensembles H0 and H1 of probability measures on R

k are said to be discernible if there exists a sequence
fn : (Rk)n → {0, 1} of Borel measurable functions achieving (2) and (3). Thus our test implies
discernability of the set H0 in (1) and the set H1 of dependent random variables.
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them here). We emphasize that our tests are explicit, easy to carry out, and require very
few assumptions on the partition sequences.

Our second approach to independence testing is kernel-based. In this case, our test
statistic has a number of different interpretations: as an L2 distance between Parzen win-
dow estimates (Rosenblatt, 1975), as a smoothed difference between empirical characteristic
functions (Feuerverger, 1993; Kankainen, 1995), or as the Hilbert-Schmidt norm of a cross-
covariance operator mapping between functions of the random variables (Gretton et al.,
2005a, 2008). Each test differs from the others regarding the conditions on the kernels:
the Parzen window statistic requires the kernel bandwidth to decrease with increasing sam-
ple size, and has a different limiting distribution to the remaining two statistics; while the
Hilbert-Schmidt approach uses a fixed bandwidth, and can be thought of as a generalization
of the characteristic function-based test. We provide two new results: a strong consistent
test of independence based on a tighter large deviation bound than that of Gretton et al.
(2005a), and an empirical comparison of the limiting distributions of the kernel-based statis-
tic for fixed and decreasing kernel bandwidth, as used in asymptotic tests.

Additional independence testing approaches also exist in the statistics literature. For
d = d′ = 1, an early nonparametric test for independence, due to Hoeffding (1948); Blum
et al. (1961), is based on the notion of differences between the joint distribution function
and the product of the marginals. The associated independence test is consistent under
appropriate assumptions. Two difficulties arise when using this statistic in a test, however.
First, quantiles of the null distribution are difficult to estimate. Second, and more im-
portantly, the quality of the empirical distribution function estimates becomes poor as the
dimensionality of the spaces R

d and R
d′ increases, which limits the utility of the statistic

in a multivariate setting. Further approaches to independence testing can be used when
particular assumptions are made on the form of the distributions, for instance that they
should exhibit symmetry. We do not address these approaches in the present study.

The current work is built on an earlier presentation by Gretton and Györfi (2008).
Compared with this earlier work, the present study contains more detailed proofs of the
main theorems, proofs of secondary theorems omitted by Gretton and Györfi (2008) due to
space constraints, additional experiments on higher dimensional benchmark data, and an
experimental comparison with the bootstrap approach for the L1 and log-likelihood based
tests (a similar comparison for the kernel-based test was made by Gretton et al., 2008).

The paper is organized as follows. Section 2 describes the large deviation and limit
distribution properties of the L1-test statistic. The large deviation result is used to formulate
a distribution-free strong consistent test of independence, which rejects the null hypothesis
if the test statistic becomes large. The limit distribution is used in an asymptotically α-
level test, which is consistent when the distribution is nonatomic. Both a distribution-free
strong consistent test and an asymptotically α-level test are presented for the log-likelihood
statistic in Section 3. Section 4 contains a review of kernel-based independence statistics,
and describes the associated hypothesis tests for both the fixed-bandwidth and variable-
bandwidth cases. Finally, a numerical comparison between the tests is given in Section
5.
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2. L1-based statistic

Denote by νn, µn,1 and µn,2 the empirical measures associated with the samples
(X1, Y1), . . . , (Xn, Yn), X1, . . . ,Xn, and Y1, . . . , Yn, respectively, so that

νn(A×B) = n−1#{i : (Xi, Yi) ∈ A×B, i = 1, . . . , n},
µn,1(A) = n−1#{i : Xi ∈ A, i = 1, . . . , n}, and

µn,2(B) = n−1#{i : Yi ∈ B, i = 1, . . . , n},

for any Borel subsets A and B. Given the finite partitions Pn = {An,1, . . . , An,mn} of R
d and

Qn = {Bn,1, . . . , Bn,m′
n
} of R

d′ , we define the L1 test statistic comparing νn and µn,1 ×µn,2

as

Ln(νn, µn,1 × µn,2) =
∑

A∈Pn

∑

B∈Qn

|νn(A×B) − µn,1(A) · µn,2(B)|.

In the following two sections, we derive the large deviation and limit distribution properties
of this L1 statistic, and the associated independence tests.

2.1 Strongly consistent test

For testing a simple hypothesis versus a composite alternative, Györfi and van der Meulen
(1990) introduced a related goodness of fit test statistic Ln defined as

Ln(µn,1, µ1) =
∑

A∈Pn

|µn,1(A) − µ1(A)|.

Beirlant, Devroye, Györfi, and Vajda (2001), and Biau and Györfi (2005) proved that, for
all 0 < ε,

P{Ln(µn,1, µ1) > ε} ≤ 2mne−nε2/2. (4)

We now describe a similar result for our L1 independence statistic.

Theorem 1 Under H0, for all 0 < ε1, 0 < ε2 and 0 < ε3,

P{Ln(νn, µn,1 × µn,2) > ε1 + ε2 + ε3} ≤ 2mn·m′
ne−nε2

1/2 + 2mne−nε2
2/2 + 2m′

ne−nε2
3/2.

Proof We bound Ln(νn, µn,1 × µn,2) according to

Ln(νn, µn,1 × µn,2) =
∑

A∈Pn

∑

B∈Qn

|νn(A×B) − µn,1(A) · µn,2(B)|

≤
∑

A∈Pn

∑

B∈Qn

|νn(A×B) − ν(A×B)|

+
∑

A∈Pn

∑

B∈Qn

|ν(A×B) − µ1(A) · µ2(B)|

+
∑

A∈Pn

∑

B∈Qn

|µ1(A) · µ2(B) − µn,1(A) · µn,2(B)|.
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Under the null hypothesis H0, we have that
∑

A∈Pn

∑

B∈Qn

|ν(A×B) − µ1(A) · µ2(B)| = 0.

Moreover
∑

A∈Pn

∑

B∈Qn

|µ1(A) · µ2(B) − µn,1(A) · µn,2(B)|

≤
∑

A∈Pn

∑

B∈Qn

|µ1(A) · µ2(B) − µ1(A) · µn,2(B)|

+
∑

A∈Pn

∑

B∈Qn

|µ1(A) · µn,2(B) − µn,1(A) · µn,2(B)|

=
∑

B∈Qn

|µ2(B) − µn,2(B)| +
∑

A∈Pn

|µ1(A) − µn,1(A)|

= Ln(µn,1, µ1) + Ln(µn,2, µ2).

Thus, (4) implies

P{Ln(νn, µn,1 × µn,2) > ε1 + ε2 + ε3}
≤ P {Ln(νn, ν) > ε1} + P {Ln(µn,1, µ1) > ε2} + P {Ln(µn,2, µ2) > ε3}
≤ 2mn·m′

ne−nε2
1/2 + 2mne−nε2

2/2 + 2m′
ne−nε2

3/2.

Theorem 1 yields a strong consistent test of independence, which rejects the null hypoth-
esis if Ln(νn, µn,1 × µn,2) becomes large. The test is distribution-free, i.e., the probability
distributions ν, µ1 and µ2 are completely arbitrary; and the threshold is universal, i.e., it
does not depend on the distribution.

Corollary 2 Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)
≈ c1

√
mnm′

n

n
,

where
c1 >

√
2 ln 2 ≈ 1.177. (5)

Assume that conditions

lim
n→∞

mnm
′
n

n
= 0, (6)

and

lim
n→∞

mn

lnn
= ∞, lim

n→∞
m′

n

lnn
= ∞, (7)

are satisfied. Then under H0, the test makes a.s. no error after a random sample size.
Moreover, if

ν 6= µ1 × µ2,
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and for any sphere S centered at the origin,

lim
n→∞

max
A∈Pn, A∩S 6=0

diam(A) = 0 (8)

and
lim

n→∞
max

B∈Qn, B∩S 6=0
diam(B) = 0, (9)

then after a random sample size the test makes a.s. no error.

Proof Under H0, we obtain from Theorem 1 a non-asymptotic bound for the tail of the
distribution of Ln(νn, µn,1 × µn,2), namely

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)}

≤ 2mnm′
ne−c21mnm′

n/2 + 2mne−c21mn/2 + 2m′
ne−c21m′

n/2

≤ e−(c21/2−ln 2)mnm′
n + e−(c21/2−ln 2)mn + e−(c21/2−ln 2)m′

n

as n→ ∞. Therefore the conditions (7) imply

∞∑

n=1

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)}
<∞,

and the proof under the null hypothesis is completed by the Borel-Cantelli lemma.
For the result under the alternative hypothesis, we first apply the triangle inequality

Ln(νn, µn,1 × µn,2) ≥
∑

A∈Pn

∑

B∈Qn

|ν(A×B) − µ1(A) · µ2(B)|

−
∑

A∈Pn

∑

B∈Qn

|νn(A×B) − ν(A×B)|

−
∑

B∈Qn

|µ2(B) − µn,2(B)|

−
∑

A∈Pn

|µ1(A) − µn,1(A)|.

The condition in (6) implies the three last terms of the right hand side tend to 0 a.s.
Moreover, using the technique from Barron, Györfi, and van der Meulen (1992) we can
prove that by conditions (8) and (9),

∑

A∈Pn

∑

B∈Qn

|ν(A×B) − µ1(A) · µ2(B)| → 2 sup
C

|ν(C) − µ1 × µ2(C)| > 0

as n → ∞, where the last supremum is taken over all Borel subsets C of R
d × R

d′ , and
therefore

lim inf
n→∞

Ln(νn, µn,1 × µn,2) ≥ 2 sup
C

|ν(C) − µ1 × µ2(C)| > 0 (10)

a.s.
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2.2 Asymptotic α-level test

Beirlant, Györfi, and Lugosi (1994) proved, under conditions

lim
n→∞

mn = ∞, lim
n→∞

mn

n
= 0, (11)

and

lim
n→∞

max
j=1,...,mn

µ1(Anj) = 0, (12)

that √
n (Ln(µn,1, µ1) − E{Ln(µn,1, µ1)}) /σ D→ N (0, 1),

where
D→ stands for the convergence in distribution and σ2 = 1 − 2/π. The technique

of Beirlant, Györfi, and Lugosi (1994) involves a Poisson representation of the empirical
process in conjunction with Bartlett’s idea of partial inversion for obtaining characteristic
functions of conditional distributions (see Bartlett, 1938). We apply these techniques in
Appendix A to derive an asymptotic result for Ln(νn, µn,1 × µn,2).

Theorem 3 Assume that conditions (6) and

lim
n→∞

max
A∈Pn

µ1(A) = 0, lim
n→∞

max
B∈Qn

µ2(B) = 0, (13)

are satisfied. Then, under H0, there exists a centering sequence (Cn)n≥1 depending on ν
such that √

n (Ln(νn, µn,1 × µn,2) − Cn) /σ
D→ N (0, 1),

where σ2 = 1 − 2/π.

Theorem 3 yields the asymptotic null distribution of a consistent independence test,
which rejects the null hypothesis if Ln(νn, µn,1×µn,2) becomes large. In contrast to Corollary
2, and because of condition (12), this new test is not distribution-free. In particular, the
measures µ1 and µ2 have to be nonatomic.

Corollary 4 Let α ∈ (0, 1). Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c2

√
mnm′

n

n
+

σ√
n

Φ−1(1 − α)

≈ c2

√
mnm′

n

n
,

where

σ2 = 1 − 2/π and c2 =
√

2/π ≈ 0.798,

and Φ denotes the standard normal distribution function. Then, under the conditions of
Theorem 3, the test has asymptotic significance level α. Moreover, under the additional
conditions (8) and (9), the test is consistent.
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Before proceeding to the proof, we examine how the above test differs from that in Corollary
2. In particular, comparing c2 above with c1 in (5), both tests behave identically with respect
to
√
mnm′

n/n for large enough n, but c2 is smaller.

Proof According to Theorem 3, under H0,

P{√n(Ln(νn, µn,1 × µn,2) − Cn)/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1 − Φ(x).

Thus the α-level test rejects the null hypothesis if

Ln(νn, µn,1 × µn,2) > Cn +
σ√
n

Φ−1(1 − α).

As Cn depends on the unknown distribution, we apply an upper bound

Cn ≤
√

2/π

√
mnm′

n

n

(see eq. (29) in Appendix A for the definition of Cn, and eq. (30) for the bound), so
decreasing the error probability.

3. Log-likelihood statistic

In the literature on goodness-of-fit testing the I-divergence statistic, Kullback-Leibler diver-
gence, or log-likelihood statistic,

In(µn,1, µ1) =

mn∑

j=1

µn,1(An,j) log
µn,1(An,j)

µ1(An,j)
,

plays an important role. For testing independence, the corresponding log-likelihood test
statistic is defined as

In(νn, µn,1 × µn,2) =
∑

A∈Pn

∑

B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) · µn,2(B)
.

The large deviation and the limit distribution properties of In(νn, µn,1 × µn,2) can be
derived from the properties of

In(νn, ν) =
∑

A∈Pn

∑

B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)
.
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We have that under H0,

In(νn, ν) − In(νn, µn,1 × µn,2)

=
∑

A∈Pn

∑

B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)

−
∑

A∈Pn

∑

B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) · µn,2(B)

=
∑

A∈Pn

∑

B∈Qn

νn(A×B) log
µn,1(A) · µn,2(B)

ν(A×B)

=
∑

A∈Pn

∑

B∈Qn

νn(A×B) log
µn,1(A) · µn,2(B)

µ1(A) · µ2(B)
,

therefore

In(νn, ν) − In(νn, µn,1 × µn,2)

=
∑

A∈Pn

∑

B∈Qn

νn(A×B)

(
log

µn,1(A)

µ1(A)
+ log

µn,2(B)

µ2(B)

)

=
∑

A∈Pn

µn,1(A) log
µn,1(A)

µ1(A)
+
∑

B∈Qn

µn,2(B) log
µn,2(B)

µ2(B)

= In(µn,1, µ1) + In(µn,1, µ1)

≥ 0.

3.1 Strongly consistent test

We refer to Tusnády (1977) and Barron (1989) who first discussed the exponential character
of the tails of In. Kallenberg (1985), and Quine and Robinson (1985) proved that, for all
ǫ > 0,

P{In(µn,1, µ1) > ǫ} ≤
(
n+mn − 1

mn − 1

)
e−nǫ ≤ emn log(n+mn)−nǫ.

Note that using an alternative bound due to Barron (1989, eq. (3.5)), we obtain under (11)
and (12) that

P{In(µn,1, µ1) > ǫ} = e−n(ǫ+o(1)), (14)

such that

lim
n→∞

1

n
log P{In(µn,1, µ1) > ǫ} = −ǫ.

A large deviation based test can be introduced such that the test rejects the indepen-
dence if

In(νn, µn,1 × µn,2) ≥
mnm

′
n(log(n+mnm

′
n) + 1)

n
.
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Under H0, we obtain a non-asymptotic bound for the tail of the distribution of In(νn, µn,1×
µn,2):

P

{
In(νn, µn,1 × µn,2) >

mnm
′
n(log(n+mnm

′
n) + 1)

n

}

≤ P

{
In(νn, ν) >

mnm
′
n(log(n +mnm

′
n) + 1)

n

}

≤ emnm′
n log(n+mnm′

n)−n
mnm′

n(log(n+mnm′
n)+1)

n

= e−mnm′
n .

Therefore condition (7) implies

∞∑

n=1

P

{
In(νn, µn,1 × µn,2) >

mnm
′
n(log(n+mnm

′
n) + 1)

n

}
<∞,

and by the Borel-Cantelli lemma we have strong consistency under the null hypothesis.
Under the alternative hypothesis the proof of strong consistency follows from the in-

equality, also called Pinsker’s inequality, which upper bounds the L1 error in terms of
I-divergence (c.f. Csiszár, 1967; Kemperman, 1969; Kullback, 1967),

Ln(νn, µn,1 × µn,2)
2 ≤ 2In(νn, µn,1 × µn,2). (15)

Therefore,

lim inf
n→∞

2In(νn, µn,1 × µn,2) ≥ (lim inf
n→∞

Ln(νn, µn,1 × µn,2))
2

≥ 4 sup
C

|ν(C) − µ1 × µ2(C)|2 > 0

a.s., where the supremum is taken over all Borel subsets C of R
d × R

d′ . In fact, under
conditions (8), (9), and

I(ν, µ1 × µ2) <∞,

one may get
lim

n→∞
In(νn, µn,1 × µn,2) = I(ν, µ1 × µ2) > 0

a.s. (see Barron et al., 1992). Note that due to the form of the universal test threshold,
strong consistency under H1 requires the condition

lim
n→∞

mnm
′
n

n
log(n+mnm

′
m) = 0,

as compared to (6).

3.2 Asymptotic α-level test

Concerning the limit distribution, Inglot et al. (1990), and Györfi and Vajda (2002) proved
that under (11) and (12),

2nIn(µn,1, µ1) −mn√
2mn

D→ N (0, 1). (16)
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This implies that for any real valued x, under the conditions (6) and (13),

P

{
2nIn(νn, µn,1 × µn,2) −mnm

′
n√

2mnm′
n

≤ x

}
≤ P

{
2nIn(νn, ν) −mnm

′
n√

2mnm′
n

≤ x

}

→ Φ(x),

which results in a test rejecting the independence if

2nIn(νn, µn,1 × µn,2) −mnm
′
n√

2mnm′
n

≥ Φ−1(1 − α),

or equivalently

In(νn, µn,1 × µn,2) ≥
Φ−1(1 − α)

√
2mnm′

n +mnm
′
n

2n
.

Note that unlike the L1 case, the ratio of the strong consistent threshold to the asymp-
totic threshold increases for increasing n.

4. Kernel-based statistic

We now present a second class of approaches to independence testing, based on a kernel
statistic. We can derive this statistic in a number of ways. The most immediate interpre-
tation, introduced by Rosenblatt (1975), defines the statistic as the L2 distance between
the joint density estimate and the product of marginal density estimates. Let K and K ′ be
density functions (called kernels) defined on R

d and on R
d′ , respectively. For the bandwidth

h > 0, define

Kh(x) =
1

hd
K
(x
h

)
and K ′

h(x) =
1

hd′
K ′
(x
h

)
.

The Rosenblatt-Parzen kernel density estimates of the density of (X,Y ) and X are respec-
tively

fn(x, y) =
1

n

n∑

i=1

Kh(x−Xi)K
′
h(y − Yi) and fn,1(x) =

1

n

n∑

i=1

Kh(x−Xi), (17)

with fn,2(y) defined by analogy. Rosenblatt (1975) introduced the kernel-based indepen-
dence statistic

Tn =

∫

Rd×Rd′
(fn(x, y) − fn,1(x)fn,2(y))

2dx dy. (18)

Alternatively, defining

Lh(x) =

∫

Rd

Kh(u)Kh(x− u)du =
1

hd

∫

Rd

K(u)K(x− u)du

and L′
h(x) by analogy, we may write the kernel test statistic

Tn = 1
n2

∑n
i=1

∑n
j=1 Lh(Xi −Xj)L

′
h(Yi − Yj)

− 2
n3

∑n
i=1

(∑n
j=1 Lh(Xi −Xj)

)(∑n
j=1 L

′
h(Yi − Yj)

)

+
(

1
n2

∑n
i=1

∑n
j=1Lh(Xi −Xj)

)(
1
n2

∑n
i=1

∑n
j=1 L

′
h(Yi − Yj)

)
. (19)
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Note that at independence, the expected value of the statistic is not zero, but

E{Tn} =
n− 1

n2
(Lh(0) −E{Lh(X1 −X2)})

(
L′

h(0) − E{L′
h(Y1 − Y2)}

)
(20)

≤ n−1Lh(0)L′
h(0) = (nhdhd′)−1‖K‖2‖K ′‖2. (21)

A second interpretation of the above statistic is as a smoothed difference between the
joint characteristic function and the product of the marginals (Feuerverger, 1993). The
characteristic function and Rosenblatt-Parzen window statistics can be quite similar: in
fact, for appropriate smoothing and kernel choices and fixed n, they may be identical
(Kankainen, 1995). For increasing n, the main differences between the approaches are
that the kernel bandwidth h must decrease in the Rosenblatt test for consistency of the
kernel density estimates, and the more restrictive conditions on the Rosenblatt-Parzen test
statistic (Rosenblatt, 1975, conditions a.1-a.4).

A further generalization of the statistic is presented by Gretton et al. (2005a, 2008),
in terms of covariances between feature mappings of the random variables to reproducing
kernel Hilbert spaces (RKHSs). We now briefly review this interpretation, beginning with
some necessary terminology and definitions. Let F be an RKHS, with the continuous feature
mapping φ(x) ∈ F for each x ∈ R

d, such that the inner product between the features is
given by the positive definite kernel function Lh(x, x′) := 〈φ(x), φ(x′)〉F . Likewise, let G be
a second RKHS on R

d′ with kernel L′
h(·, ·) and feature map ψ(y). Following Baker (1973);

Fukumizu et al. (2004), the cross-covariance operator Cν : G → F for the measure ν is
defined such that for all f ∈ F and g ∈ G,

〈f,Cνg〉F = E ([f(X) − E(f(X))] [g(Y ) − E(g(Y ))]) .

The cross-covariance operator can be thought of as a generalisation of a cross-covariance
matrix between the (potentially infinite dimensional) feature mappings φ(x) and ψ(y).

To see how this operator may be used to test independence, we recall the following
characterization of independence (see e.g. Jacod and Protter, 2000, Theorem 10.1e):

Theorem 5 The random variables X and Y are independent if and only if cov(f(X), g(Y )) =
0 for any pair (f, g) of bounded, continuous functions.

While the bounded continuous functions are too rich a class to permit the construction
of a covariance-based test statistic on a sample, Fukumizu et al. (2008); Sriperumbudur
et al. (2008) show that when F̃ is the unit ball in a characteristic2 RKHS F , and G̃ the
unit ball in a characteristic RKHS G, then

sup
f∈ eF ,g∈eG

E ([f(X) −E(f(X))] [g(Y ) − E(g(Y ))]) = 0 ⇐⇒ ν = µ1 × µ2.

In other words, the spectral norm of the covariance operator Cν between characteristic
RKHSs is zero only at independence. Rather than the maximum singular value, we may

2. The reader is referred to (Fukumizu et al., 2008; Sriperumbudur et al., 2008) for conditions under which
an RKHS is characteristic. We note here that the Gaussian kernel on R

d has this property, and provide
further discussion below.
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use the squared Hilbert-Schmidt norm (the sum of the squared singular values), which has
a population expression

H(ν;F ,G) = E{Lh(X1 −X2)L
′
h(Y1 − Y2)} − 2E {E{Lh(X1 −X2)|X1}E{Lh(Y1 − Y2)|Y1}}

+E{Lh(X1 −X2)}E{L′
h(Y1 − Y2)}

(if the expectations exist; see Gretton et al., 2005a, Lemma 1): we call this the Hilbert-
Schmidt independence criterion (HSIC).

The test statistic in (19) is then interpreted as a biased empirical estimate of H(ν;F ,G).
Clearly, whenKh and K ′

h are continuous and square integrable densities, the induced kernels
Lh and L′

h are continuous positive definite RKHS kernels. However, as long as Lh and L′
h

are characteristic kernels, then H(ν;F ,G) = 0 iff X and Y independent. The Gaussian
and Laplace kernels are characteristic on R

d (Fukumizu et al., 2008), and universal kernels
(in the sense of Steinwart, 2001) are characteristic on compact domains (Gretton et al.,
2005a, Theorem 6). Sriperumbudur et al. (2008) provide a simple necessary and sufficient
condition for a translation invariant kernel to be characteristic on R

d: the Fourier spectrum
of the kernel must be supported on the entire domain. Note that characteristic kernels need
not be inner products of square integrable probability density functions: an example is the
kernel

Lh(x1, x2) = exp(xT
1 x2/h)

from Steinwart (2001, Section 3, Example 1), which is universal, hence characteristic on
compact subsets of R

d. Finally, an appropriate choice of kernels allows testing of dependence
in non-Euclidean settings, such as distributions on strings and graphs (Gretton et al., 2008).

4.1 Strongly consistent test

The empirical statistic Tn was previously shown by Gretton et al. (2005a) to converge in
probability to its expectation with rate 1/

√
n. Given 0 ≤ Lh(0)L′

h(0) ≤ 1, the corresponding
result is

P(Tn −E(Tn) ≥ ǫ2) ≤ 3e−0.24nǫ4 ,

which follows from the straightforward application of a bound by Hoeffding (1963, p. 25).
We now provide a more refined bound which scales better with ǫ, and is thus tighter when
the bandwidth h decreases.

We will obtain our results for the semi-statistic

T̃n = ‖fn(·, ·) − Efn(·, ·)‖2,

since under the null hypothesis,
√
Tn = ‖fn(·, ·) − fn,1(·)fn,2(·)‖

≤ ‖fn(·, ·) − Efn(·, ·)‖ + ‖fn,1(·)fn,2(·) − Efn,1(·)Efn,2(·)‖

≤
√
T̃n + ‖fn,1(·)(fn,2(·) − Efn,2(·))‖ + ‖(fn,1(·) − Efn,1(·))Efn,2(·)‖

=

√
T̃n + ‖fn,1(·)‖ ‖fn,2(·) − Efn,2(·)‖ + ‖fn,1(·) − Efn,1(·)‖ ‖Efn,2(·)‖

≈
√
T̃n.

12



Theorem 6 For any ǫ > 0,

P

{
T̃n ≥

(
ǫ+ E

{√
T̃n

})2
}

≤ e−nǫ2
/

(2Lh(0)L′
h(0)).

Proof We apply the McDiarmid inequality (c.f. McDiarmid, 1989): Let Z1, . . . , Zn be
independent random variables taking values in a set A and assume that f : An → R

satisfies

sup
z1,...,zn,

z′i∈A

|f(z1, . . . , zn) − f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ ci, 1 ≤ i ≤ n.

Then, for all ǫ > 0,

P {f(Z1, . . . , Zn) − Ef(Z1, . . . , Zn) ≥ ǫ} ≤ e−2ǫ2
/

Pn
i=1 c2i .

Because of

√
T̃n = ‖fn(·, ·) −Efn(·, ·)‖

= ‖ 1

n

n∑

i=1

Kh(· −Xi)K
′
h(· − Yi) − Efn(·, ·)‖

≤ ‖ 1

n
Kh(· −X1)K

′
h(· − Y1)‖ + ‖ 1

n

n∑

i=2

Kh(· −Xi)K
′
h(· − Yi) − Efn(·, ·)‖

we can apply McDiarmid inequality with

2

n
‖Kh(· −X1)K

′
h(· − Y1)‖ =

2

n

√
Lh(0)L′

h(0) =: ci = c1,

where we note that the ci are independent of i, and can be replaced by a single c1. Thus,

P

{√
T̃n − E

{√
T̃n

}
≥ ǫ

}
≤ e−2ǫ2

/
Pn

i=1 c2i

= e−2ǫ2
/

(nc21)

≤ e−nǫ2
/

(2Lh(0)L′
h(0)).

This implies

P

{
T̃n ≥

(
ǫ+ E

{√
T̃n

})2
}

≤ e−nǫ2
/

(2Lh(0)L′
h(0)).

From these inequalities we can derive a test of independence. Choose ǫ such that

nǫ2
/
(2Lh(0)L′

h(0)) = 2 lnn.

13



Because of

E{T̃n} ≈ E{Tn} ≤ Lh(0)L′
h(0)

n
,

we choose the threshold
(√

Lh(0)L′
h(0)4 ln n

n
+

√
Lh(0)L′

h(0)

n

)2

=
Lh(0)L′

h(0)

n
(
√

4 ln n+ 1)2,

i.e., we reject the hypothesis of independence if

Tn >
‖K‖2‖K ′‖2

nhdhd′
(
√

4 lnn+ 1)2.

It follows from

P

{
Tn ≥ Lh(0)L′

h(0)

n
(
√

4 ln n+ 1)2
}

≈ P



T̃n ≥

(√
Lh(0)L′

h(0)4 ln n

n
+

√
Lh(0)L′

h(0)

n

)2




≤ P



T̃n ≥

(√
Lh(0)L′

h(0)4 ln n

n
+

√
E{T̃n}

)2




≤ P



T̃n ≥

(√
Lh(0)L′

h(0)4 ln n

n
+ E

{√
T̃n

})2




≤ e−2 ln n

that this test of independence is strongly consistent.
Under the alternative hypothesis, there are two cases:

• If h→ 0 and the density f exists and is square integrable, then

Tn → ‖f − f1f2‖2 > 0

a.s. The strong consistency is not distribution-free, since ν must have a square inte-
grable density.

• If h is fixed, the strong law of large numbers implies

Tn → E{Lh(X1 −X2)L
′
h(Y1 − Y2)} − 2E {E{Lh(X1 −X2)|X1}E{Lh(Y1 − Y2)|Y1}}

+E{Lh(X1 −X2)}E{L′
h(Y1 − Y2)} (22)

=: H(ν;F ,G)

If Kh and K ′
h are continuous and square integrable densities, the induced kernels Lh

and L′
h are continuous positive definite kernels: H(ν;F ,G) is then the squared Hilbert-

Schmidt norm of the covariance operator for ν. We may replace Lh and L′
h with any

characteristic kernels (in the sense of Fukumizu et al., 2008; Sriperumbudur et al.,
2008), however, and retain the property H(ν;F ,G) = 0 iff X and Y independent. In
this case, the strong consistency is distribution-free.
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4.2 Approximately α-level tests

We now describe the asymptotic limit distribution of the test statistic Tn in (19). We
address two cases: first, when the kernel bandwidth decreases, and second, when it remains
fixed.

Let us consider the case where Kh(x) and K ′
h(y) are intended to be used in a Rosenblatt-

Parzen density estimator, as in (17). The corresponding density estimates in Tn are mean
square consistent if h = hn such that

hn → 0 and nhd
nh

d′

n → ∞. (23)

Based on the results of Hall (1984); Cotterill and Csörgő (1985); Beirlant and Mason (1995),
we expect that, under these consistency conditions,

Tn −E{Tn}√
var(Tn)

D→ N (0, 1).

We next calculate var(Tn) ≈ var(T̃n). Under the null hypothesis,

T̃n = ‖fn(·, ·) − Efn(·, ·)‖2

=

∥∥∥∥∥
1

n

n∑

i=1

(Kh(· −Xi)K
′
h(· − Yi) − E{Kh(· −X)K ′

h(· − Y )})
∥∥∥∥∥

2

=
1

n2

n∑

i=1

n∑

j=1

(
(Kh(· −Xi)K

′
h(· − Yi) − E{Kh(· −X)K ′

h(· − Y )}) ×

(Kh(· −Xj)K
′
h(· − Yj) − E{Kh(· −X)K ′

h(· − Y )})
)

=:
1

n2

n∑

i=1

n∑

j=1

Mh(Xi, Yi,Xj , Yj),

and therefore

var(T̃n) =
1

n4

n∑

i=1

n∑

j=1

n∑

i′=1

n∑

j′=1

cov(Mh(Xi, Yi,Xj , Yj),Mh(Xi′ , Yi′ ,Xj′ , Yj′)).

One can check that

cov(Mh(Xi, Yi,Xj , Yj),Mh(Xi′ , Yi′ ,Xj′ , Yj′)) = 0

unless (i, j) = (i′, j′) or (i, j) = (j′, i′). Thus,

var(T̃n) =
1

n4
(nvar(Mh(X1, Y1,X1, Y1)) + 2n(n− 1)var(Mh(X1, Y1,X2, Y2)))

≈ 2

n2
var(Mh(X1, Y1,X2, Y2)).

If h→ 0 then
2

n2
var(Mh(X1, Y1,X2, Y2)) ≈

2‖f‖2

n2hdhd′
, (24)
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therefore a possible form for the asymptotic normal distribution is

nhd/2hd′/2(Tn − E{Tn})/σ D→ N (0, 1),

where

σ2 = 2‖f‖2.

Thus the asymptotic α-level test rejects the null hypothesis if

Tn > E{Tn} +
σ

nhd/2hd′/2
Φ−1(1 − α),

where E{Tn} may be replaced by its upper bound,

Lh(0)L′
h(0)/n = ‖K‖2‖K ′‖2/(nhdhd′).

The only problem left is that the threshold is not distribution-free: σ depends on the
unknown f . The simplest distribution-free bound for the variance,

σ2 ≤ ‖K‖4‖K ′‖4

n2h2dh2d′

is unsatisfactory since its performance as a function of h is worse than the result (24).
An improved distribution-free bound on the variance (for both fixed and decreasing h) is a
topic for future research: we give an empirical estimate below (eq. 26) for use in asymptotic
hypothesis tests.

We now consider the case of fixed h. Following Feuerverger (1993); Serfling (1980), the
distribution of Tn under H0 is

nTn
D→

∞∑

l=1

λlz
2
l , (25)

where zl ∼ N (0, 1) i.i.d., and λl are the solutions to an eigenvalue problem depending on
the unknown distribution of X and Y (see Gretton et al., 2008, Theorem 2 for details).

A difficulty in using the statistic (19) in a hypothesis test therefore arises due to the
form of the null distribution of the statistic, which is a function of the unknown distribution
over X and Y , whether or not h is fixed. In the case of h decreasing according to (23), we
may use an empirical estimate of the variance of Tn under H0 due to Gretton et al. (2008,
Theorem 4). Denoting by ⊙ the entrywise matrix product and A·2 the entrywise matrix
power,

var(Tn) = 1⊤ (B− diag(B)) 1, (26)

where

B =
(
(HLH) ⊙

(
HL′H

))·2
,

L is a matrix with entries Lh(Xi − Xj), L′ is a matrix with entries L′
h(Yi − Yj), H =

I − n−111⊤ is a centering matrix, and 1 an n× 1 vector of ones.

Two approaches have been proposed in the case of fixed h to obtain appropriate quantiles
of the null distribution for hypothesis testing: repeated shuffling of the sample (Feuerverger,
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Figure 1: Simulated cumulative distribution function of Tn (Emp) under H0 for n = 200
(left column) and n = 500 (right column), compared with the two-parameter
Gamma distribution (Gamma) and the Normal distribution (Normal). The em-
pirical CDF was obtained empirically using 5000 independent draws of Tn. Both
the parametric approximations are fit using the mean and variance in equations
(20) and (26). “Samp” is the number n of samples, and the bandwidth is h.

1993), and approximation by a two-parameter Gamma density (Kankainen, 1995),

nTn ∼ xα−1e−x/β

βαΓ(α)

where α =
(E{Tn})2
var(Tn)

, β =
nvar(Tn)

E{Tn}
,
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and E{Tn} is given in (20). This Gamma approximation was found by Gretton et al.
(2008) to perform identically on the Section 5 benchmark data to the more computationally
expensive approach of Feuerverger (1993). We emphasize, however, that this approximation
is a heuristic: no guarantees are provided regarding the asymptotic performance of this
approximation in terms of Type II error, nor is it established under what conditions the
approximation fails.

We end this section with an empirical comparison between the Normal and two-parameter
Gamma null distribution approximations, and the null CDF generated by repeated inde-
pendent samples of Tn. We chose X and Y to be independent and univariate, with X
having a uniform distribution and Y being a symmetric bimodal mixture of Gaussians.
Both variables had zero mean and unit standard deviation. Results are plotted in Figure 1.

We observe that as the bandwidth increases, the Gamma approximation of Tn becomes
more accurate (although it is always good for large quantiles, which is the region most
important to a hypothesis test). The Normal approximation is very close to the Gamma
approximation for small bandwidths, but is less accurate (with respect to both the Gamma
distribution and the simulated CDF) for larger bandwidths. Finally, for the smallest band-
width (h = 0.01), both approximate null distributions become more accurate for increasing
n (for larger kernel sizes, the effect is too small to see on the plots). We will return to these
points in the next section when analysing our experimental results.

5. Numerical results

In comparing the independence tests, we made use of the multidimensional benchmark
data proposed by Gretton et al. (2008). We tested the independence in two, four, and
six dimensions (i.e. d ∈ 1, 2, 3 and d = d′). The data were constructed as follows. First,
we generated n samples of two independent univariate random variables, each drawn at
random from the ICA benchmark densities of Bach and Jordan (2002, Figure 5): these
included super-Gaussian, sub-Gaussian, multimodal, and unimodal distributions, with the
common property of zero mean and unit variance. The densities are described in Table
5, as reproduced from Gretton et al. (2005b, Table 3). Second, we mixed these random
variables using a rotation matrix parametrised by an angle θ, varying from 0 to π/4 (a zero
angle meant the data were independent, while dependence became easier to detect as the
angle increased to π/4: see the two plots in Figure 2). Third, in the cases d = 2 and d = 3,
independent Gaussian noise of zero mean and unit variance was used to fill the remaining
dimensions, and the resulting vectors were multiplied by independent random two- or three-
dimensional orthogonal matrices, to obtain random vectors X and Y dependent across all
observed dimensions. We emphasise that classical approaches (such as Spearman’s ρ or
Kendall’s τ) are unable to find this dependence, since the variables are uncorrelated; nor
can we recover the subspace in which the variables are dependent using PCA, since this
subspace has the same second order properties as the noise. We investigated sample sizes
n = 128, 512, 1024, and 2048.

We compared three different asymptotic independence testing approaches based on space
partitioning: the L1 test, denoted L1; the log likelihood test Like; and a third test, Pears,
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Label Definition Kurtosis

a Student’s t distribution, 3 DOF ∞
b Double exponential 3.00
c Uniform -1.20

d Students’s t distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70

g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50

j Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
l Asymm. mixture 2 Gauss., unimodal -0.20

m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o Symmetric mixture 4 Gauss., unimodal -0.40

p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

Table 1: Labels of distributions used in the independence test benchmarks, and their re-
spective kurtoses. All distributions have zero mean and unit variance.
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Figure 2: Example dataset for d = d′ = 1, n = 200, and rotation angles θ = π/8 (left) and
θ = π/4 (right). In this case, both sources are mixtures of two Gaussians (source
(g) in Gretton et al., 2005b, Table 3).

based on a conjecture regarding the asymptotic distribution of the Pearson χ2 statistic

χ2
n(νn, µn,1 × µn,2) =

∑

A∈Pn

∑

B∈Qn

(νn(A×B) − µn,1(A) · µn,2(B))2

µn,1(A) · µn,2(B)

(see Appendix B for details, and for a further conjecture regarding a strongly consistent test
for the χ2

n statistic). The number of discretisations per dimension was set at mn = m′
n = 4,

besides in the n = 128, d = 2 case and the d = 3 cases, where it was set at mn = m′
n = 3:

for the latter values of n and d, there were too few samples per bin when a greater number
of partitions were used, causing poor performance. We divided our spaces R

d and R
d′ into

roughly equiprobable bins. Further increases in the number of partitions per dimension,
where sufficient samples were present to justify this (i.e., the n = 512, d = 1 case), resulted
only in very minor shifts in performance.

We compared the partitioning approaches with the kernel approach from Section 4, us-
ing both the Gamma Ker(g) and Normal Ker(n) approximations to the null distribution.
Our kernels were Gaussian for both X and Y , with bandwidths set to the median distance
between samples of the respective variables. Note that a more sophisticated but compu-
tationally costly approach to bandwidth selection is described by Fukumizu et al. (2008),
which involves matching the closed-form expression for the variance of Tn in (26) with an
estimate obtained by data shuffling.

Results are plotted in Figure 3 (average over 500 independent generations of the data).
The y-intercept on these plots corresponds to the acceptance rate of H0 at independence, or
1− (Type I error), and should be close to the design parameter of 1−α = 0.95. Elsewhere,
the plots indicate acceptance of H0 where the underlying variables are dependent, i.e. the
Type II error.

As expected, we observe dependence becomes easier to detect as θ increases from 0 to
π/4, when n increases, and when d decreases. Although no tests are reliable for small θ,
several tests do well as θ approaches π/4 (besides the case of n = 128, d = 2). The L1

test has a lower Type II error than the χ2 test when the number of samples per partition
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Figure 3: Rate of acceptance of H0 for the Ker(g), Ker(n), L1, Pears, and Like tests.
“Samp” is the number n of samples, and “dim” is the dimension d = d′ of x and
y. In the final row, the performance of the Ker(g) and Ker(n) tests is plotted for
a large bandwidth h = 3, and α̃ = 0.5, to illustrate the difference between the
Normal and two-parameter Gamma approximations to the null distribution.
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Figure 4: Rate of acceptance of H0 for the distribution-free (Free) and shuffling-based
(Shuff) null distribution quantiles, using the L1 test statistic. “Samp” is the
number n of samples, and “dim” is the dimension d = d′ of x and y.

is small (n = 128, d = 1, n = 128, d = 2, and n = 1024, d = 3), but this advantage
is lessened for larger numbers of samples per partition. The log-likelihood test generally
has the lowest Type II error of the three partition-based tests, however it gives a Type
I error larger than the design parameter of 0.05 when the number of samples per bin is
insufficient: this problem is severe in the case n = 1024 and d = 3, but can also be observed
at n = 2048, d = 3 (for larger sample sizes n = 3072, d = 3 and n = 4096, d = 3, the
Type I error of the log-likelihood test was at or below the design value). This suggests the
log-likelihood test is more susceptible to bias for small numbers of samples per bin than the
L1 and χ2 tests. In the remaining cases, performance of the log-likelihood test and the L1

test is comparable, besides in the case n = 512, d = 2, where the log-likelihood test has an
advantage.

The superior performance of the log-likelihood test compared with the χ2 test (in the
cases d = 1 and d = 2) might arise due to the different convergence properties of the two
test statistics. In particular, we note the superior convergence behaviour of the goodness-
of-fit statistic for the log likelihood (eq. 14), as compared with the χ2 statistic (eq. 31
in Appendix B), in terms of the dependence of the latter on the number mn of partitions
used. By analogy, we anticipate the log-likelihood independence statistic In(νn, µn,1 ×µn,2)
will also converge faster than the Pearson χ2 independence statistic χ2

n(νn, µn,1×µn,2), and
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Figure 5: Rate of acceptance of H0 for the distribution-free (Free) and shuffling-based
(Shuff) null distribution quantiles, using the log-likelihood test statistic. “Samp”
is the number n of samples, and “dim” is the dimension d = d′ of x and y.

thus provide better test performance. A more formal discussion of this behaviour is a topic
for future research.

In all cases, the kernel-based test has the lowest Type II error.3 That said, one should
bear in mind the kernel test thresholds require E{Tn} and var(Tn), which are unknown
and must be estimated from the data using equations (20) and (26), respectively. In other
words, unlike the L1 and log likelihood tests, the kernel test thresholds in our experiments
are themselves finite sample estimates (which we have not attempted to account for, and
which could impact on test performance). Moreover, the Gamma approximation to the null
distribution is simply a heuristic, with no asymptotic guarantees.

It is of interest to further investigate the null distribution approximation strategies
for the kernel tests, and in particular to determine the effect on test performance of the
observations made in Figure 1. Since the median distance between sample points was
small enough in our previous experiments for the Normal and Gamma estimates to be very
similar, we used an artificially high kernel bandwidth h = 3. In addition, we employed a
much lower α̃ = 0.5, since this provided a more visible performance difference. The final
row of Figure 3 shows the resulting test performance. We recall from Figure 1 that for large

3. Aside from n = 1024 and d = 3, where the log-likelihood has a lower Type II error: we disregard this
result since it is due to the log-likelihood test being affected by bias, as discussed above.
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kernel sizes and α̃ = 0.5, the Gaussian approximation returns a larger threshold than the
true CDF would require, and thus the Normal distribution has a lower Type I error (the
error for very small values of α is in the opposite direction, but had a less pronounced effect
in our experiments). The large bandwidth required to observe this behaviour results in a
substantial performance penalty on the Type II error, however, and would not be used in
practice.

An alternative approach to obtaining null distribution quantiles for test thresholds is
via a shuffling procedure: the ordering of the Y1, . . . , Yn sample is permuted repeatedly
while that of X1, . . . ,Xn sample is kept fixed, and the 1 − α quantile is obtained from
the resulting estimated cumulative distribution function of the test statistic. Again, we
emphasize that unlike the asymptotic L1 and log-likelihood tests we have proposed, the
resulting test threshold is an empirical estimate, and the convergence behaviour of this
estimate is not accounted for. In our final experiments, we compared the performance of
our asymptotic tests for L1 and Like with this shuffling approach, for the same data as in
our Figure 3 experiments.4 We used p = 200 permutations in obtaining the approximation
to the null distribution. Results for the L1 case are plotted in Figure 4, and those for the
Like case in Figure 5.

In the case of the L1 statistic, we observe the distribution-free approach is conservative
in terms of the Type I error, generally setting it slightly lower than the target value. The
shuffling approach returns a lower Type II error, however it is notable that the performance
difference is not particularly large with respect to our distribution-free threshold, and that
apart from an offset, the error as a function of angle takes the same form. We should further
bear in mind that the shuffling approach has a substantially greater computational cost (p
times the cost of the distribution-free test). In the case of the Like statistic, we observe
similar behaviour to L1 in the cases d = 1 and d = 2. In the d = 3 case, however, the Like
test gives too large a Type I error, and thus the Type II performance of the two approaches
cannot be compared (although for n = 2048, the Like test is observed to approach the
asymptotic regime, and the Type I performance is closer to the target value).

6. Conclusion

We have described distribution-free strong consistent tests of independence, and asymp-
totically α-level tests, based on three statistics: the L1 distance, the log-likelihood, and a
kernel-based distance. The asymptotic L1 and log-likelihood tests require that the distri-
butions be non-atomic, but make no assumptions apart from this: in particular, the test
thresholds are not functions of the distribution. The kernel statistic is interpretable as ei-
ther an L2 distance between kernel density estimates (if the kernel bandwidth shrinks for
increasing sample size), or as the Hilbert-Schmidt norm of a covariance operator between
reproducing kernel Hilbert spaces (if the kernel bandwidth is fixed). We have provided
a novel strong consistent test for the kernel statistic, as well as reviewing two asymptot-
ically α-level tests (for both fixed and shrinking kernel bandwidth). Unlike the L1 and
log-likelihood tests, the thresholds for the kernel asymptotic tests are distribution depen-

4. This comparison was made for the kernel statistic on these data by Gretton et al. (2008), and no
performance difference was found.
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dent. We also gave conjectures regarding the strong consistent test and asymptotically
α-level test for the Pearson χ2 distance.

Our experiments showed the asymptotic tests to be capable of detecting dependence
for both univariate and multi-dimensional variables (of up to three dimensions each), for
variables having no linear correlation. The kernel tests had lower Type II error than the
L1 and log-likelihood tests for a given Type I error, however we should bear in mind that
the kernel test thresholds were finite sample estimates, and the resulting convergence issues
have not been addressed. The log-likelihood test appeared to suffer more from bias than
the L1 test, in cases where there were few samples per partition (this effect was most visible
in high dimensions).

This study raises a number of questions for future research. First, the χ2 tests remain
conjectures, and proofs should be established. Second, there is as yet no distribution-free
asymptotic threshold for the kernel test, which could be based on a tighter bound on the
variance of the test statistic under the null distribution. Third, the asymptotic distribution
of the kernel statistic with fixed bandwidth is presently a heuristic: it would therefore be
of interest to replace this with a null distribution estimate having appropriate convergence
guarantees.
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Appendix A. Proof of Theorem 3

The main difficulty in proving Theorem 3 is that it states the asymptotic normality of
Ln(νn, µn,1×µn,2), which is a sum of dependent random variables. To overcome this problem,
we use a “Poissonization” argument originating from the fact that an empirical process is
equal in distribution to the conditional distribution of a Poisson process given the sample
size (for more on Poissonization techniques, we refer the reader to Beirlant, Györfi, and
Lugosi, 1994).

We begin by introducing the necessary terminology. For each n ≥ 1, denote by Nn a
Poisson(n) random variable, defined on the same probability space as the sequences (Xi)i≥1

and (Yi)i≥1, and independent of these sequences. Denote by νNn , µNn,1 and µNn,2 the
Poissonized version of the empirical measures associated with the samples {(Xi, Yi)}, {Xi}
and {Yi}, respectively, so that

νNn(A×B) =
#{i : (Xi, Yi) ∈ A×B, i = 1, . . . , Nn}

n
,

µNn,1(A) =
#{i : Xi ∈ A, i = 1, . . . , Nn}

n
,
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and

µNn,2(B) =
#{i : Yi ∈ B, i = 1, . . . , Nn}

n

for any Borel subsets A and B. The Poissonized version L̃n(νn, µn,1 ×µn,2) of Ln(νn, µn,1 ×
µn,2) is then

L̃n(νn, µn,1 × µn,2) =
∑

A∈Pn

∑

B∈Qn

|νNn(A×B) − µNn,1(A) · µNn,2(B)|.

Clearly,
nνNn(A×B) = #{i : (Xi, Yi) ∈ A×B, i = 1, . . . , Nn},

nµNn,1(A) = #{i : Xi ∈ A, i = 1, . . . , Nn},
and

nµNn,2(B) = #{i : Yi ∈ B, i = 1, . . . , Nn}
are Poisson random variables.

Key to the proof of Theorem 3 is the following property, which is a slight extension of
the proposition of Beirlant, Györfi, and Lugosi (1994, p. 311).

Proposition 7 Let gnjk (n ≥ 1, j = 1, . . . ,mn, k = 1, . . . ,m′
n) be real measurable func-

tions, and let

Mn :=

mn∑

j=1

m′
n∑

k=1

gnjk (νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)) .

Assume that, under the null hypothesis,

E{gnjk (νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk))} = 0,

and that (
Mn,

Nn − n√
n

)
D→ N

([
0
0

]
,

[
σ2 0
0 1

])
(27)

as n → ∞, where σ is a positive constant and N (m,C) is a normally distributed random
variable with mean m and covariance matrix C. Then

1

σ

mn∑

j=1

m′
n∑

k=1

gnjk (νn(Anj ×Bnk) − µn,1(Anj)µn,2(Bnk))
D→ N (0, 1).

Proof The proof is in sketch form, along the lines of Biau and Györfi (2005). Define the
two characteristic functions

Φn(t, v) := E

{
exp

(
ıtMn + ıv

Nn − n√
n

)}

and

Ψn(t) := E



exp


ıt

mn∑

j=1

m′
n∑

k=1

gnjk (νn(Anj ×Bnk) − µn,1(Anj)µn,2(Bnk))






 .
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We begin with the result

E {exp (ıtMn + ıuNn)} =
∞∑

l=0

E{exp(ıtMn)|Nn = l}eıulpn(l),

where pn(l) is the probability distribution of the Poisson(n) random variable Nn,

pn(l) = P{Nn = l} = e−nnl/l!,

and
Ψn(t) = E{exp(ıtMn)|Nn = n}.

Taking the inverse Fourier transform,

E{exp(ıtMn)|Nn = n} =
1

2πpn(n)

∫ π

−π
e−ıunE {exp (ıtMn + ıuNn)} du.

We now replace n! with the Stirling approximation to obtain

2πpn(n) =
2πe−nnn

n!
≈
√

2π

n
as n→ ∞.

Then, substituting v = u
√
n, we get

Ψn(t) =
1√
2π

(1 + o(1))

∫ π
√

n

−π
√

n
Φn(t, v)dv.

By assumption,
Φn(t, v) → e−t2σ2/2e−v2/2

as n→ ∞. The result follows from Rao (1973, p. 136).

We now use Proposition 7 to prove
√
n

σ
(Ln(νn, µn,1 × µn,2) − E{L̃n(νn, µn,1 × µn,2)}) D→ N (0, 1), (28)

where we recall σ2 = 1 − 2/π. This provides the result in Theorem 3 with the centering
constant

Cn = E{L̃n(νn, µn,1 × µn,2)} =
∑

A∈Pn

∑

B∈Qn

E{|νNn(A×B) − µNn,1(A) · µNn,2(B)|}. (29)

To apply Proposition 7, we must prove assumption (27) holds. Define

gnjk(x) =
√
n (|x| −E |νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)|) .

Let

Sn := t
√
n

mn∑

j=1

m′
n∑

k=1

(
|νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)|

−E |νNn(Anj ×Bnk) − µNn,1(Anj)µNn,2(Bnk)|
)

+v
√
n

(
Nn

n
− 1

)
.
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Our goal is to prove the assumption in (27) holds. In particular, we require the variance
of the Poissonized statistic Sn. After this variance is calculated, the asymptotic normality
in (27) can be proved by verifying the Lyapunov conditions as in (Beirlant, Györfi, and
Lugosi, 1994). From the definitions of νNn , µ1, and µ2, we have

Nn

n
− 1 =

∑

A∈Pn

∑

B∈Qn

νNn(A×B) −
∑

A∈Pn

∑

B∈Qn

µ1(A)µ2(B),

and thus the variance of Sn is

var(Sn) = t2n
∑

A∈Pn

∑

B∈Qn

var |νNn(A×B) − µNn,1(A)µNn,2(B)|

+ 2tvn
∑

A∈Pn

∑

B∈Qn

E
{
|νNn(A×B) − µNn,1(A)µNn,2(B)|

· (νNn(A×B) − µ1(A)µ2(B))
}

+ v2.

One can check that there exist standard normal random variables ZA×B, ZA, and ZB such
that

νNn(A×B)
D≈ ZA×B

√
µ1(A)µ2(B)

n
+ µ1(A)µ2(B),

µNn,1(A)
D≈ ZA

√
µ1(A)

n
+ µ1(A),

and

µNn,2(B)
D≈ ZB

√
µ2(B)

n
+ µ2(B),

which implies

νNn(A×B) − µNn,1(A)µNn,2(B)

D≈ ZA×B

√
µ1(A)µ2(B)

n
+ µ1(A)µ2(B)

−
(
ZA

√
µ1(A)

n
+ µ1(A)

)(
ZB

√
µ2(B)

n
+ µ2(B)

)

=

√
µ1(A)µ2(B)

n

(
ZA×B − ZAZB

1√
n
− ZA

√
µ2(B) − ZB

√
µ1(A)

)

≈ ZA×B

√
µ1(A)µ2(B)

n
.
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Thus,

var(Sn)

≈ t2n
∑

A∈Pn

∑

B∈Qn

var

∣∣∣∣∣ZA×B

√
µ1(A)µ2(B)

n

∣∣∣∣∣

+ 2tvn
∑

A∈Pn

∑

B∈Qn

E

{∣∣∣∣∣ZA×B

√
µ1(A)µ2(B)

n

∣∣∣∣∣ ·
(
ZA×B

√
µ1(A)µ2(B)

n

)}

+ v2

= t2
∑

A∈Pn

∑

B∈Qn

var |ZA×B|µ1(A)µ2(B)

+ 2tv
∑

A∈Pn

∑

B∈Qn

E {|ZA×B |ZA×B}µ1(A)µ2(B)

+ v2

= t2(1 − 2/π) + v2.

Finally, we use the variable ZA×B in defining a distribution-free upper bound on Cn,
which we use in our asymptotically α-level independence test,

Cn =
∑

A∈Pn

∑

B∈Qn

E{|νNn(A×B) − µNn,1(A) · µNn,2(B)|}

≈
∑

A∈Pn

∑

B∈Qn

E{|ZA×B |}
√
µ1(A)µ2(B)/n

≤
√

2/π

√
mnm′

n

n
(30)

Appendix B. Conjectured large sample properties of the Pearson χ2

statistic

For a real parameter λ, the power divergence statistic is defined as

Dn,λ(µn,1, µ1) =
2

λ(λ+ 1)

mn∑

j=1

µn,1(An,j)

[(
µn,1(An,j)

µ1(An,j)

)λ

− 1

]

provided λ 6= 0 and λ 6= 1 (cf. Read and Cressie, 1988). One can check that

lim
λ→0

Dn,λ(µn,1, µ1) = In(µn,1, µ1).

For λ = 1, we have the Pearson χ2 statistic:

χ2
n(µn,1, µ1) = Dn,1(µn,1, µ1) =

mn∑

j=1

(µn,1(An,j)) − µ1(An,j))
2

µ1(An,j)
.

For testing independence, we employ the Pearson χ2 test statistic

χ2
n(νn, µn,1 × µn,2) =

∑

A∈Pn

∑

B∈Qn

(νn(A×B) − µn,1(A) · µn,2(B))2

µn,1(A) · µn,2(B)
.

29



B.1 Strongly consistent test

Quine and Robinson (1985) proved that, for all ǫ > 0,

P{χ2
n(µn,1, µ1) > ǫ} ≤

(
n+mn − 1

mn − 1

)
e
−n log mn

2
√

mn

√
ǫ ≤ e

mn log(n+mn)−n log mn
2
√

mn

√
ǫ
. (31)

A large deviation-based test can be introduced that rejects independence if

χ2
n(νn, µn,1 × µn,2) ≥

(
2(mnm

′
n)3/2(log(n+mnm

′
n) + 1)

n log(mnm′
n)

)2

.

Under H0, we conjecture a non-asymptotic bound for the tail of the distribution of χ2
n(νn, µn,1×

µn,2),

P



χ

2
n(νn, µn,1 × µn,2) >

(
2(mnm

′
n)3/2(log(n+mnm

′
n) + 1)

n log(mnm′
n)

)2




≤ e
mnm′

n log(n+mnm′
n)−n log(mnm′

n)

2
√

mnm′
n

2(mnm′
n)3/2(log(n+mnm′

n)+1)

n log(mnm′
n)

= e−mnm′
n .

Therefore the conditions (7) imply

∞∑

n=1

P



χ

2
n(νn, µn,1 × µn,2) >

(
2(mnm

′
n)3/2(log(n+mnm

′
n) + 1)

n log(mnm′
n)

)2


 <∞,

and by the Borel-Cantelli lemma we have strong consistency under the null hypothesis.
Under the alternative hypothesis the proof strong consistency follows from the proof for

the information divergence since

In(νn, µn,1 × µn,2)/2 ≤ χ2
n(νn, µn,1 × µn,2)

(c.f. Györfi et al., 1998).

B.2 Asymptotic α-level test

Morris (1975), Inglot et al. (1990), and Györfi and Vajda (2002) proved that under (11)
and (12),

nχ2
n(µn,1, µ1) −mn√

2mn

D→ N (0, 1),

which is the same asymptotic normality result as for 2In(µn,1, µ1) (see eq. (16) in Section
3.2). We conjecture that under the conditions (6) and (13),

nχ2
n(νn, µn,1 × µn,2) −mnm

′
n√

2mnm′
n

D→ N (0, 1).

Thus, as for the log-likelihood statistic, the hypothesis of independence is rejected if

χ2
n(νn, µn,1 × µn,2) ≥

Φ−1(1 − α)
√

2mnm′
n +mnm

′
n

n
.
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